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Why do we want to frequency-lock lasers?

Laser frequency drifts due to different
environmental effects.

Applications:
e LIGO: frequency lock using PDH locking
e GQUEST: Design filter cavities (MOT)

Ultimately, we want to frequency-lock the
laser to reduce the degrees of freedom in
and stabilize our experiments.

Credit: Caltech/MIT/LIGO Lab



How do we lock lasers?

Error signal
Controller Sensing




How do we lock lasers? Pound Drever Hall (PDH) technique

1). Mechanism

The PDH technique uses a cavity (two
parallel mirrors) as a reference to lock
the laser to.

If our laser is at the resonant frequency
of the cavity, we achieve minimum
reflectance and maximum transmittance.
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How do we lock lasers? Pound Drever Hall (PDH) technique

1). Mechanism
How do we distinguish between if we
are above or below resonance?
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How do we lock lasers? Pound Drever Hall (PDH) technique

2). Dithering

If we modulate the incoming light,
we can determine if the “derivative”
of the curve is positive or negative,
which distinguishes whether we are
above or below resonance.
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How do we lock lasers? Pound Drever Hall (PDH) technique
3). Demodulation
We extract the error signal by
mixing then lowpass-filtering our

measured signal.

This asymmetric signal tells us
which side of resonance we are on!




Vapor Cells: an absolute reference

Downfalls of cavities: e

Mirrors are prone to mechanical
shifts, temperature expansions, etc.

Relative reference.




Vapor Cells: an absolute reference

" What about locking with a vapor cell? g
Downfalls of cavities:
Mirrors are prone to mechanical Atomic transitions are an absolute
shifts, temperature expansions, etc. reference. N
We can lock to an exact transition,
Relative reference. which is useful when you are working

with a laser of single frequency.
Issues: they suffer from external fields,
limited transitions and transition
strength




How do we lock to a vapor cell?

10



How do we lock to a vapor cell?

How can we achieve
greater frequency
discrimination?

Add a pump into the
setup.
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Method: Optical Setup

Vapor Cell
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Maximizing error signal

We want to maximize the error
signal slope to get better
frequency discrimination.

To maximize the slope, we
want to maximize the
absorption dip depth.
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Absorption Dips at 40 Celsius

Maximizing error signal

How do...
Beam size
Vapor cell temperature

Laser current

Laser temperature
Incident power on vapor cell

affect the depth of the absorption dip?

Vapor Cell —D

Temperature Controller
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Effect of vapor cell temperature on dip depth

At higher temperatures...
e We begin packing the states. o
e We get a higher atomic density, which ’ A0 Caris

Increases absorption.
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Effect of beam size on dip depth

Vapor Cell at 40 Celsius Vapor Cell at 40 Celsius

—#— Smaller beam size —§— smaller beam size
Larger beam size Larger beam size

Absolute Dip Depth (mw}

5 6 7 3 4 5 6 7
Power at photodetector (mwW) Power at photodetector (mwW)

Main conclusions: A larger beam size and higher vapor cell temperature increases the
absorption dip depth.
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Locking to the single absorption dip

Send modulated light through the Probe (without pump)
vapor cell and demodulate to get the
error signal.

Vapor Cell

—— Absorption Dip
—— Error Signal
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Locking to the single absorption dip

We take the power spectral density (PSD) of the

; ) error signal while locked and after breaking lock
How do we know we're locked to obtain a measurement of noise.
msmv@ @ ° . Probe (without pump)

—— Unlocked
122 mv — Locked
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Photodetector Signal

Locking to the saturated
absorption dip
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Locking to the saturated absorption dip

Probe (with pump)

How do we know we’re locked?

260 m \ .
mv
220 mv
207.5 mV
200 mv
180 mv
—— Unlocked
—— Locked
160 mv
102 103
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Frequency (Hz)
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Frequency Discrimination Comparison

The magnitude of the slope of our error The magnitude of the slope of our error
signal is approximately 3.4 V/THz. signal is approximately 21.6 V/THz.
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Noise Spectra

The probe and pump
configuration produces the
least amount of noise!

Noise Spectra
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Noise Spectra Noise Spectra

The probe and pump
configuration produces the
least amount of noise!

|
I
—
.
[
=)

This is a good sanity check
but more optimization and —
testing is necessary before s Ji—— Lothec Mithout pump
—— Locked with pump
we can fully trust these :
104
results. Frequency (Hz)
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Future Work

® Optimize the slow and fast controller.
O Parameter adjustments like gain and corner frequencies can
cause the locked laser to display greater noise than the free-
running laser.

® Improve signal amplification with a low-noise amplifier
and tank (resonance) circuit.

® Fix the laser’s power fluctuations.

® Improve calibration.

® Subtract out Doppler broadening effect to extract atom
transitions.

® Add second harmonic generation to lock a 1560 nm
laser rather than just a 780 nm laser.

Briana Chen, Caltech LIGO SURF, 8/23/2024, LIGO-T2400157-v1
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Rb 87 Structure

Table 3: *"Rb Dy (5282 — 5?Py2) Transition Optical Properties.

Frequency

wo

2m - 384.230 484 468 5(62) THz

Transition Energy

h Wo

1.589 049 439(58) eV

Wavelength (Vacuum)

A

780.241 209 686(13) nm

Wavelength (Air)

/\air

780.032 00 nm

Wave Number (Vacuum)

k./2m

12 816.549 389 93(21) cm ™!

Lifetime

T

26.24(4) ns

Decay Rate/
Natural Line Width (FWHM)

38.11(6) x 109 s~ 1
27 - 6.065(9) MHz

Absorption oscillator strength

0.6956(15)

Recoil Velocity

5.8845 mm/s

Recoil Energy

2 - 3.7710 kHz

Recoil Temperature

361.96 nK

Doppler Shift (vatom = vr)

Au’(l(i-'atom = 7’1')

2m - 7.5419 kHz

Doppler Temperature

Ty

146 pK

moving with vey, = vy

Frequency shift for standing wave

Awgy (1':5w = '”r)

27 - 15.084 kHz

193.7407(46) MHz

. 4
T2.9112(32) MHz
¥

266,6500(

A,

g =23

(0,93 MHz/G)

L

156.9470(70) MHz

a=213
(0.3 MHz/G)

A
72.2180(40) MHz
v

& =2/3
(0.93 MHz/G)

2.563 005 979 0= 109(34) GHz

Y
A

1271 676 631 815 1581(56) GHz

F=2

ge=1/2
(0.70 MHz/G)

6834 652 G10 904 2900(90) GHz

D. A. Steck, Rubidium 87 d line data, available online at http://steck.us/alkalidata. (revision 2.1.4, 23 December 2010

o =-12 F=1

{=0.70 MHz/G)


http://steck.us/alkalidata

PDH cont.

Error Function
T T T
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1.156 Hz, 15 dB
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Slow Controller Effect (Without Pump)

1.156 Hz, 13 dB
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Crossover Resonances
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Scan Offset

Frequency 7 mHz

54 mv
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Power Fluctuations
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Calibrated
error signals
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This used lock-in amplifier.
Locking to two different transitions (red is the D2).
Comparison with PDH cavity?
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