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Why do we want to frequency-lock lasers?

Laser frequency drifts due to different 

environmental effects.

Applications:

● LIGO: frequency lock using PDH locking

● GQuEST: Design filter cavities (MOT)

Ultimately, we want to frequency-lock the 

laser to reduce the degrees of freedom in 

and stabilize our experiments.
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How do we lock lasers?
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How do we lock lasers? Pound Drever Hall (PDH) technique

1). Mechanism

The PDH technique uses a cavity (two 

parallel mirrors) as a reference to lock 

the laser to. 

If our laser is at the resonant frequency 

of the cavity, we achieve minimum 

reflectance and maximum transmittance. 

4
Briana Chen, Caltech LIGO SURF, 8/23/2024, LIGO-T2400157-v1



How do we lock lasers? Pound Drever Hall (PDH) technique

1). Mechanism

How do we distinguish between if we 

are above or below resonance?
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How do we lock lasers? Pound Drever Hall (PDH) technique

2). Dithering

If we modulate the incoming light, 

we can determine if the “derivative” 

of the curve is positive or negative, 

which distinguishes whether we are 

above or below resonance.
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How do we lock lasers? Pound Drever Hall (PDH) technique

3). Demodulation

We extract the error signal by 

mixing then lowpass-filtering our 

measured signal. 

This asymmetric signal tells us 

which side of resonance we are on!
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Vapor Cells: an absolute reference

Downfalls of cavities:

• Mirrors are prone to mechanical 

shifts, temperature expansions, etc.

• Relative reference. 

?

?
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Vapor Cells: an absolute reference

Downfalls of cavities:

• Mirrors are prone to mechanical 

shifts, temperature expansions, etc.

• Relative reference. 

What about locking with a vapor cell?

• Atomic transitions are an absolute 

reference.

• We can lock to an exact transition, 

which is useful when you are working 

with a laser of single frequency.

• Issues: they suffer from external fields, 

limited transitions and transition 

strength?

?
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How do we lock to a vapor cell?
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How do we lock to a vapor cell?

How can we achieve 

greater frequency 

discrimination? 

Add a pump into the 

setup. 
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Method: Optical Setup
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Maximizing error signal

We want to maximize the error

signal slope to get better

frequency discrimination.

To maximize the slope, we

want to maximize the

absorption dip depth.
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How do…

• Beam size

• Vapor cell temperature

• Laser current

• Laser temperature

• Incident power on vapor cell 

affect the depth of the absorption dip?

Maximizing error signal



Effect of vapor cell temperature on dip depth

At higher temperatures…

● We begin packing the states.

● We get a higher atomic density, which 

increases absorption. 
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Effect of beam size on dip depth

Main conclusions: A larger beam size and higher vapor cell temperature increases the 

absorption dip depth.
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Locking to the single absorption dip

Send modulated light through the 

vapor cell and demodulate to get the 

error signal.
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Locking to the single absorption dip

We take the power spectral density (PSD) of the 
error signal while locked and after breaking lock 
to obtain a measurement of noise. 
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How do we know we’re locked?



Locking to the saturated 

absorption dip
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Locking to the saturated absorption dip
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How do we know we’re locked?



Frequency Discrimination Comparison
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The magnitude of the slope of our error 

signal is approximately 3.4 V/THz.

The magnitude of the slope of our error 

signal is approximately 21.6 V/THz.
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Noise Spectra

The probe and pump 

configuration produces the 

least amount of noise!

23
Briana Chen, Caltech LIGO SURF, 8/23/2024, LIGO-T2400157-v1



Noise Spectra
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The probe and pump 

configuration produces the 

least amount of noise!

This is a good sanity check

but more optimization and 

testing is necessary before 

we can fully trust these 

results.



Future Work

● Optimize the slow and fast controller.

o Parameter adjustments like gain and corner frequencies can 

cause the locked laser to display greater noise than the free-

running laser.

● Improve signal amplification with a low-noise amplifier 

and tank (resonance) circuit. 

● Fix the laser’s power fluctuations.

● Improve calibration.

● Subtract out Doppler broadening effect to extract atom 

transitions.

● Add second harmonic generation to lock a 1560 nm 

laser rather than just a 780 nm laser.
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Rb 87 Structure

D. A. Steck, Rubidium 87 d line data, available online at http://steck.us/alkalidata. (revision 2.1.4, 23 December 2010

http://steck.us/alkalidata
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PDH cont.
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Slow 

Controller 

Tuning
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Slow Controller Effect (Without Pump)



Crossover Resonances
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Scan Offset
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Power Fluctuations
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Calibrated 

error signals
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This used lock-in amplifier. 

Locking to two different transitions (red is the D2).

Comparison with PDH cavity?
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